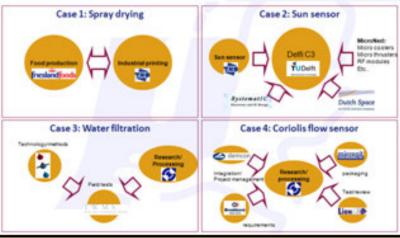
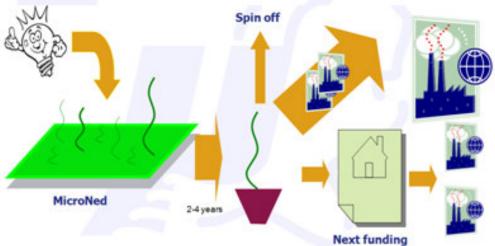


# Microfluidics: Technologies and Opportunities

Henne van Heeren enablingMNT -the Netherlands-


#### MicroNed: public private cooperation


|                                          | Results |
|------------------------------------------|---------|
| Patents                                  | 15      |
| New products                             | 19      |
| New or improved processes                | 14      |
| Improved products                        | 10      |
| Spin off companies                       | 10      |
| Spin off projects with industry involved | 158     |
| Spin off scientific projects             | 192     |
| PhDs trained                             | 80      |
| New MST Professors                       | 10      |
| Conference contributions etc.            | >600    |





Establishing a market-oriented, dynamic and sustainable public-private MST infrastructure, which forms the basis for new product-market combinations









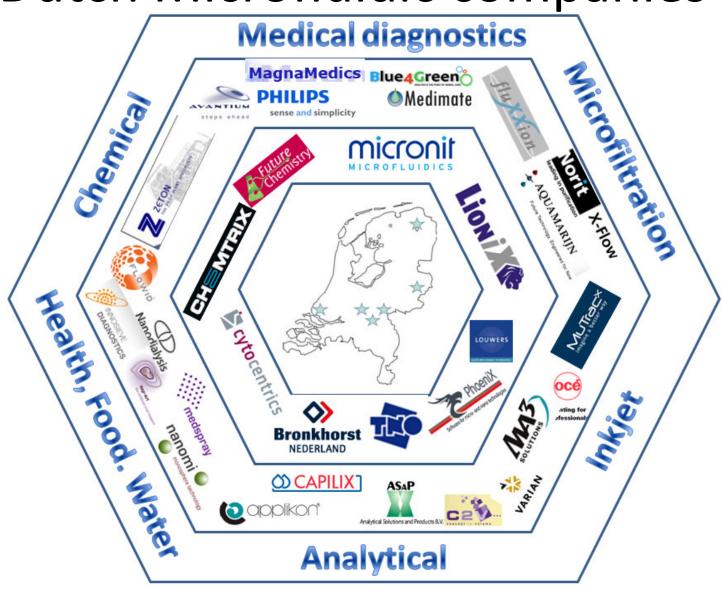
## Megafluidics in the Netherlands





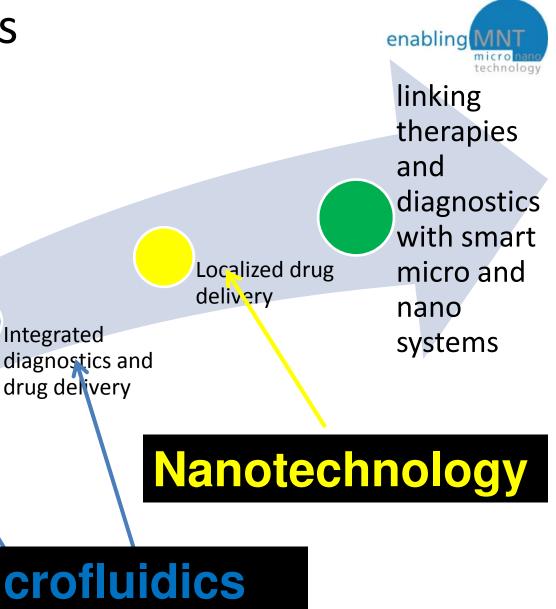











Dutch Microfluidic companies



## From Microfluidics to Nanotechnology

Drug delivery

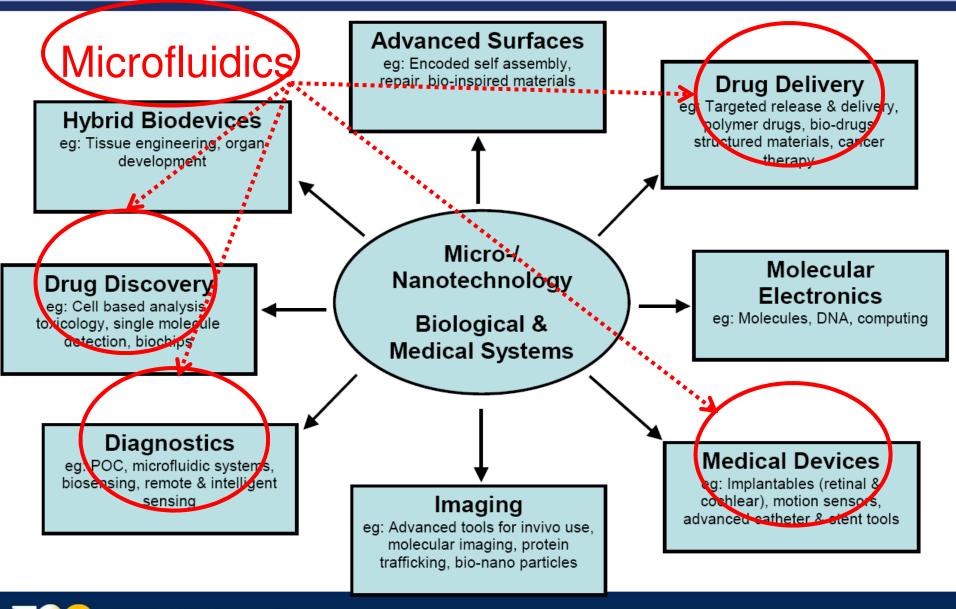


Point of care diagnostics

Microfluidics

Integrated

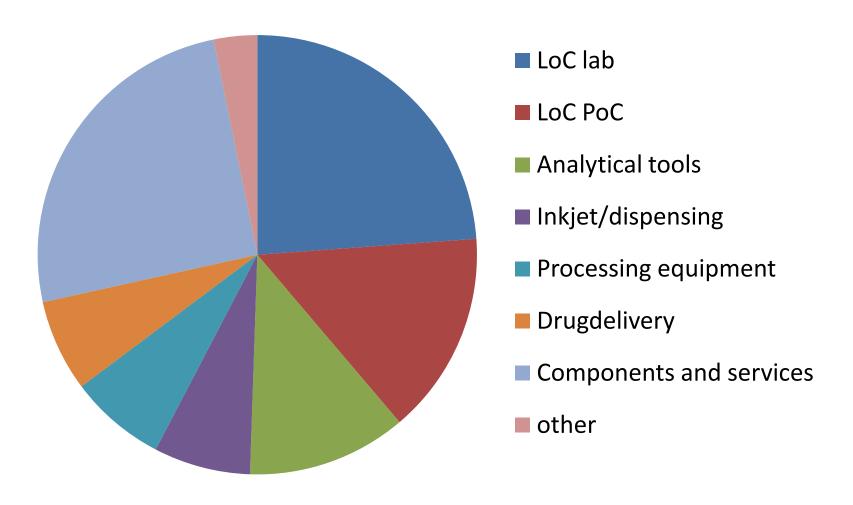
## Benefits of microfluidic-based

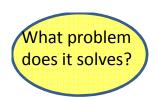

#### Processing:

- safer
- better process control
- less energy & waste

#### Diagnostics & analytical:

- speed of delivery results,
- generic technology platforms,
- customisation to optimize for specific drug properties,
- size of system, i.e. portable device for point of care applications, and
- specialization for small volume /smaller sample sizes.


#### **Nanotechnology and Healthcare: 1**








## Analysis of >275 companies of >275 companies of >275 companies





## Main driver: Point-of-Care Diagnostics



- Healthcare providers can deliver diagnosis and analysis:
  - faster,
  - at less cost,
  - more reliably.
- Individuals can monitor their own health.
- Individuals can bypass the conventional healthcare provider system.
- Tuning therapy to the real needs by PoC diagnostics





## Process & system choices

|              | Standard                                  | Special                                      |
|--------------|-------------------------------------------|----------------------------------------------|
| Cell sorting | FACS, filter based, dielectrophoresis,    | magnetic, laminar flow                       |
| Cell lysis   | Thermal, chemical,                        | mechanical                                   |
| Purification | Filters, magnetic beads, silica beads & g | gels, micro & nano engineered surfaces       |
| Separation   | CE, dielectrophoresis, magnetic beads,    | laminar flow diffusion, nanochannels         |
| Reagents     | On board liquids, external liquids,       | onboard solid reagents                       |
| Flow control | Capillary, overpressure, membrane, cer    | ntrifugal, digital, on-chip solid propellant |
| Target       | Target, direct measurement                |                                              |
| Target probe | (Single or multi) channel wall,           | magnetic beads                               |
| Detection    | Fluorescence, electrical, visual,         | spectroscopy                                 |
| Disposable   | Single use,                               | reusable                                     |

## Product classes

## LoC main concepts

- Well array with integrated electronics and/or flow control
- Capillary flow device with electronic or optical detection
- Rigid substrate with flexible membrane for pumps & valves
- Multi flow channels with external pumping force
- But: many more technologies are being used

Medimate

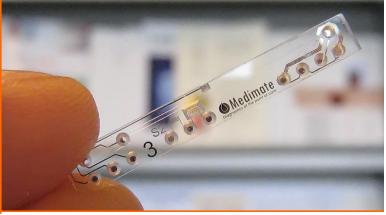
**Biomicro** 

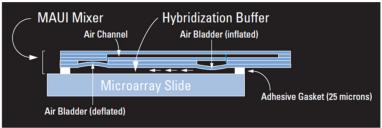
Gyros

One company, one product, one process



Simultaneous measurements of:


-pH


-O2 consumption

-Adhesion/confluency

Online/real time measurements













## LoC disposables

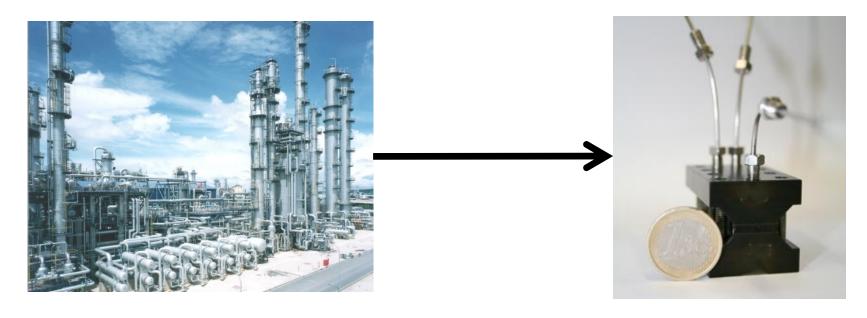
| Fabrication costs              | <1\$                  | 1-3 \$                         | 3-10 \$                                                                       | >10 \$                            |
|--------------------------------|-----------------------|--------------------------------|-------------------------------------------------------------------------------|-----------------------------------|
| Material for fluidic structure | Paper                 | plastic                        | Glass or plastic                                                              | Glass, plastic,<br>PCB or silicon |
| Pumping                        | Capillary             | Capillary or external pressure | Capillary, electro<br>kinetic, integrated<br>membrane or<br>external pressure | Whatever                          |
| Application                    | PoC                   | PoC                            | PoC or lab                                                                    | Central or research lab           |
| Example                        | Glucose,<br>pregnancy | ?                              | Agilent                                                                       | Agilent, Fluidign                 |
|                                |                       | weetspot?                      |                                                                               |                                   |
|                                | 9                     |                                |                                                                               |                                   |



### Around the corner

- IBM's DNA transistor technology,
- Paper microfluidics
- Nanowires for CMOS and sensing?
- Textile printed biosensors




### Microreactor status

- Introduction leaders: Lonza and Sigma Aldrich, but all large chemical companies are active.
- Reactor technology leaders: Velocys, Heatric and Corning, but a number of startup companies are proposing systems (FutureChemistry, ChemtriX)
- Slow but steady introduction.
- Difficult to develop reactor and process simultaneously.

## Which chemistry is suited forenabling MNI microreactors?



- Exothermic reactions.
- Extreme conditions difficult to realize in batch production.
- Very fast reactions.
- Reactions with safety risks (explosive or toxic).





## M&A 2009 /2010

| Company         | Origin      | Bought by           | Activity                            |
|-----------------|-------------|---------------------|-------------------------------------|
| Advalytix       | Germany     | Beckman Coulter     | single cell analysis                |
| BioTrove        | USA         | Life technologies   | PCR in Real Time                    |
| C2V             | Netherlands | Thermo Scientific   | HPLC                                |
| Handylab        | USA         | BD                  | Medical diagnostics                 |
| MDS             | Canada      | Danaher Corporation | mass spectrometry / bioanalytical   |
|                 |             |                     | measurement                         |
| RSIPL & Renovis | India       | Evotec              | Drug discovery                      |
| BioMicro        | USA         | Roche               | microfluidic microarray sample      |
| Systems         |             |                     | processing                          |
| Epocal          | Canada      | Inverness           | blood diagnostic                    |
| Exigent         | USA         | AB SCIEX            | HPLC                                |
| Stokes Bio      | Ireland     | Life Technologies   | Identification of cancer biomarkers |
| Xceed           | Canada      | Axela               | gene-expression analysis            |
| MicroLab        | USA         | Zygem               | microfluidic devices for rapid DNA  |
| Diagnostics     |             |                     | testing                             |



### VC deals in microfluidics

| Year      | Number of deals |        | Avarage deal size (M \$) |        |
|-----------|-----------------|--------|--------------------------|--------|
|           | USA/Canada      | Europe | USA                      | Europe |
| 2004/2005 | 4               | 3      | 12.5                     | 8.3    |
| 2006      | 5               | 5      | 15.6                     | 9.1    |
| 2007      | 8               | 6      | 27.2                     | 6.2    |
| 2008      | 11              | 4      | 28.4                     | 9.7    |
| 2009      | 12              | 5      | 20.9                     | 9.3    |
| 2010      | 6               | 4      | 19.8                     | 11.5   |

Over \$ 1.5 B VC money in microfluidics

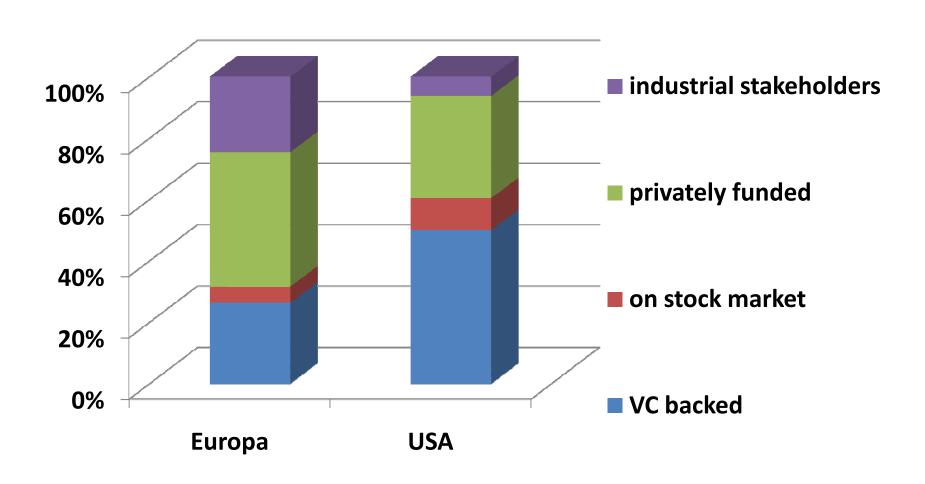


## Typical company

#### USA



- Many go for DNA sequencing
- Seed money: < 1 M \$</p>
- Government grant: 2 5M \$
- VC investment 1 4 M \$
- Second and third round:10 20 M \$ each
- Sold to large company:200 400 M\$


#### Europe



- Many go for specializedPoC
- Seed money
- Booth strapping for 5 –10 years
- VC investment < 5 M \$</p>
- Ending up as OEM in niche application or sold to large company



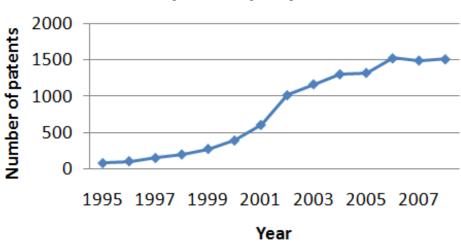
## Funding of microfluidic companies





### Top patent owners?

800


0

1995



2010

#### LOC patents per year



#### Number of patents 600 400 200

2000

Microreactor patents per year

#### Year

2005

#### LoC general

- Universities & Institutes: >1000
- Caliper (>500)
- >100
  - University of California, Gyros, Merck, Battelle
- 50-100
  - Agilent, Fluidigm, Micronics, Philips, Aclara, CEA,

#### **Microreactors**

Merck, Battelle Memorial Institute, Velocys, Forschungszentrum Karlsruhe, UDHE, Siemens, Casio, Degussa, Bayer / Ehrfeld Mikrotechnik, IMM, Clariant





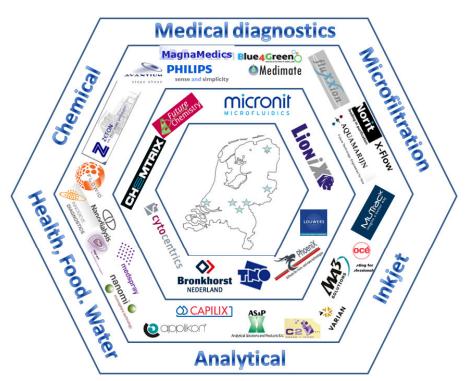
### Quarrels

- Caliper against Shimadzu (CE technology): settled
- Cellectricon against Fluxion (ion channel drug screening)
- Handylab against Caliper (settled)
- Caliper against Molecular Devices (settled)
- Caliper against Aclara (settled)



## Conclusions/additional remarks

- Yes, we are going to benefit from microfluidics, but:
  - it is a long and difficult route, and will there be an attractive business case / incentive for all the players?
  - One company, one product, one process.
- And, how about all the microfluidic patents?
- The USA companies: more active in patenting & have better access to capital.
- Europeans: exploiting well defined unique segments.
- Key challenges for the microfluidic industry
  - Define business space / business case
  - Sort out your patent position
  - Design reliable products
  - Set up industrial production processes




## Thank you for your attention

Henne van Heeren

henne@enablingmnt.com

0031 786300748



#### See you at:

Netherlands Micronanoconference 2010, November 17 & 18

www.micronanoconference.nl

MicroTAS, 3-7 October, the Netherlands,

www.microtas10.org